Introduction to Graston Technique®
Objectives:

- Gain an understanding of the Graston Technique®.
- Understand the Graston Technique® instruments and methods of use.
- Recognize how the Graston Technique® can be implemented into patient care.
- Discuss and evaluate current research regarding the Graston Technique®.
What is Graston Technique®?

- Form of Instrumented-Assisted Soft Tissue Mobilization (IASTM)
- Detect and treat soft tissue lesions and fascial restrictions
What is Graston Technique®?

- Utilizes six stainless steel instruments
- Incorporates rehabilitative exercises
History of Graston Technique®

- 1987: David Graston- knee injury

 ◦ Ball Memorial Hospital/Ball State University

- 1994: TherapyCare Resources Inc. (GT parent company)
 ◦ Outpatient clinic for outcome data
 ◦ Focus on teaching, training and research

- 1995: Performance Dynamics (Dr. Tom Sevier)

- 1997: David Graston left clinic

History of Graston Technique

- **2000:** Carpal Therapy, Inc.
 - Graston and Hall

- **2004:** Lawsuit

- **2013:** Graston Technique, LLC

 8945 North Meridian St, Suite 150

 Indianapolis, IN 46260

 888.926.2727 or 317.926.2996
Graston Technique ® Training

- ATs, PTs, OTs, Chiropractors, Massage (Can), MDs, Osteopaths, others

- M1 Basic Training- 12 hour
 - develop an understanding of GT®
 - application within musculoskeletal treatment approaches
 - proper use of the instruments
 - Basic Strokes

- GT® Provider- must use GT® instruments
Graston Technique® Training

- M2 Advanced Training: 15 hours
 - Complete M1 training - practice 3-6 months

- Incorporates movement

- Additional treatment strokes

- GT® Certified
Graston Technique®

- Six stainless instruments detect and amplify the feel of soft tissue restrictions to the hands
Graston Technique® Instruments

Treatment edge
- single or double bevel
- convex or concave
30-60°
Graston Technique ® Strokes

- Brush
- Sweep
- Fan
- Strum
- J-Stroke
- Swivel
- Scooping
- Framing
Graston Technique®

- ↑ diagnostic skills
- ↑ mechanical advantage (levers)
- ↑ specificity of tissue treatment
- ↓ treatment time
- ↓ clinician fatigue
Indications

- Tendinopathies
- Fascial syndromes
- Ligament injuries
- Edema reduction
- Scar tissue/adhesions
- Nerve entrapment
- Secondary restrictions
Contraindications

- Cancer, kidney dysfunction, diabetes, RA
- Pregnancy, meds, age, varicose veins, fxs
- Acute, post-injection
- Open wounds, sutures, infection, skin
- Thrombophlebitis, uncontrolled hypertension
GT® Effects on Tissue

- Pre-Injury: Healthy Tissue
- Injured: Strained Tissue
- Healed: Scar Tissue
Extracellular Matrix

Water
Extracellular proteins (GAGs)
Elastin
Collagen
Connective Tissue Types

- **Dense, regular**
 - Ligaments & tendons

- **Dense, irregular**
 - Aponeurosis, joint capsules, periosteum, retinaculum, ITB, dermis of skin and fascial sheaths

- **Loose, irregular**
 - Superficial fascia, nerve and muscle sheaths, internal organ sheaths
Therapeutic effectiveness of instrument-assisted soft tissue mobilization for soft tissue injury: mechanisms and practical application

Jooyoung Kim,1 Dong Jun Sung,2 and Joohyung Lee1,*

Author information ► Article notes ► Copyright and License information ►
Stages of Healing

- Inflammatory Stage
 - 24-48 hours

- Granulation Stage
 - 2-14 days

- Fibroblastic Stage
 - 1-12 weeks

- Maturation Stage
 - Up to 18 months
Fibroblast responses to variation in soft tissue mobilization pressure

GEHLESEN, GALE M.; GANION, LARRY R.; HELFST, ROBERT

Medicine & Science in Sports & Exercise: [April 1999 - Volume 31 - Issue 4 - pp 531-535]
Basic Sciences: Original Investigations
Tissue Healing

4 weeks: 43.1% stronger; 39.7% stiffer; 57.1% more energy absorption to rupture

12 weeks: 15.4% stiffer

Range of Motion

- Journal of Sport Rehabilitation

The Comparison of Instrument-Assisted Soft Tissue Mobilization and Self-Stretch Measures to Increase Shoulder Range of Motion in Overhead Athletes: A Critically Appraised Topic

The effect of Graston technique on the pain and range of motion in patients with chronic low back pain

Jeong-Hoon Lee, PT, MS¹, Dong-Kyu Lee, PT, PhD², Jae-Seop Oh, PT, PhD³*

THE GRASTON TECHNIQUE INCREASES HAMSTRING FLEXIBILITY
Yusuke Nejo- North Dakota State University
Pain Reduction

The effects of instrument-assisted soft tissue mobilization compared to other interventions on pain and function: a systematic review
Matthew Lambert, Rebecca Hitchcock, Kelly Lavallee, Eric Hayford, Russ Morazzini, Amber Wallace, Dakota Conroy, and Josh Cleeland

A follow-up of patient reported outcomes in chronic plantar heel pain participants treated with Graston Technique: A mixed methods approach
Troy Richard Garrett, University of Northern Iowa
GT® Treatment

- Evaluation/PM
- Clinician and patient positioning
- Instrument Selection
 - 8 basic strokes in MI
GT® Treatment

- Warm-up

- Assess
GT® Treatment

- Treat
- Exercise
- Ice?
Bruising, Pain Not Expected, Not Necessary

By Terry Loghmani, PT, PhD, MTC and Associate Clinical Professor in the Indiana University DPT Program.

Year after year, more clinicians use the Graston Technique® to treat acute and chronic conditions than ever before. It is rewarding to know that the technique has been embraced by rehab experts across so many disciplines. However, there the patient’s tolerance, under full patient control and should not persist beyond its direct application. It need not be considered “painful” by the patient to be effective.
Take Home…

• Graston Technique® can be an effective component of therapeutic treatment plan

• Clinicians properly trained and follow best practice guidelines

• Continue efforts with quality research
Thank you...

- Questions or comments?